The equivalent resistance between points A and B of the given circuit is (1997)

Sol. All the three resistors are connected in parallel. The equivalent resistance is $R_{\rm eq} = (2R \parallel 2R) \parallel R = R \parallel R = R/2$.

Ans. R/2 0

Integer Type

Q 48. In the following circuit, the current through the resistor $R(=2 \Omega)$ is I Amperes. The value of I is
(2015)

Sol. Consider the resistors that join the nodes B, C, D, and E. These resistors form a balanced Wheatstone bridge between the nodes B and D. Thus, 8 Ω resistor in the branch CE can be removed without affecting the circuit (see the right figure below). Effective resistance between the nodes B and D is $R_{\rm BD} = (1 \Omega + 2 \Omega) \parallel (2 \Omega + 4 \Omega) = (3 \Omega) \parallel (6 \Omega) = 2 \Omega$.

The equivalent circuit is shown in the left figure below. In this circuit, consider the resistors which join the nodes B, D, F, and G. These resistors form a balanced Wheatstone bridge between B and G. Thus, $10~\Omega$ resistor between D and F can be removed without affecting the circuit. Effective resistance between B and G is (middle figure below) $R_{\rm BG} = (6~\Omega + 12~\Omega)$ || $(2~\Omega + 4~\Omega) = (18~\Omega)$ || $(6~\Omega) = 4.5~\Omega$. Thus, the effective resistance of the entire circuit (right figure below) is $R_{\rm eff} = 2~\Omega + 4.5~\Omega = 6.5~\Omega$. The current through the resistor $R = 2~\Omega$ is $I = V/R_{\rm eff} = 6.5/6.5 = 1~\Lambda$.

Ans. 1 🖸